Carlitz q-Bernoulli Numbers and q-Stirling Numbers
نویسنده
چکیده
a+ dpZp = {x ∈ X | x ≡ a (mod dp N )}, where a ∈ Z lies in 0 ≤ a < dp , see [1-21]. The p-adic absolute value in Cp is normalized so that |p|p = 1/p. When one talks of q-extension, q is variously considered as an indeterminate, a complex number q ∈ C or a p-adic number q ∈ Cp. If q ∈ Cp, then we assume |q − 1|p < p − 1 p−1 , so that q = exp(x log q) for |x|p ≤ 1. We use the notation [x]q = [x : q] = 1− q 1− q . For f ∈ C(Zp) = {f | f ′ ∈ C(Zp)}, let us start with the expressions 1 [pN ]q ∑
منابع مشابه
Modified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملON (q; r; w)-STIRLING NUMBERS OF THE SECOND KIND
In this paper, we introduce a new generalization of the r-Stirling numbers of the second kind based on the q-numbers via an exponential generating function. We investigate their some properties and derive several relations among q-Bernoulli numbers and polynomials, and newly de ned (q; r; w)Stirling numbers of the second kind. We also obtain q-Bernstein polynomials as a linear combination of (q...
متن کاملOn the weighted degenerate Carlitz q-Bernoulli polynomials and numbers
In this paper, by using the p-adic q-integral on Zp which was defined by Kim, we define the weighted Carlitz q-Bernoulli polynomials and investigate some identities of these polynomials. In particular, we define the weighted degenerate Carlitz’s q-Bernoulli polynomials and numbers and give some interesting properties that are associated with these numbers and polynomials. AMS subject classifica...
متن کاملGeneralized q-Stirling Numbers and Their Interpolation Functions
In this paper, we define the generating functions for the generalized q-Stirling numbers of the second kind. By applying Mellin transform to these functions, we construct interpolation functions of these numbers at negative integers. We also derive some identities and relations related to q-Bernoulli numbers and polynomials and q-Stirling numbers of the second kind.
متن کاملOn a Special Congruence of Carlitz
We prove that if q is a power of a prime p and p divides a, with k ≥ 0, then 1 + (q − 1) ∑ 0≤b(q−1)<a ( a b(q − 1) ) ≡ 0 (mod p). The special case of this congruence where q = p was proved by Carlitz in 1953 by means of rather deep properties of the Bernoulli numbers. A more direct approach produces our generalization and several related results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008